Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Bull Entomol Res ; 113(3): 396-401, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2299489

ABSTRACT

Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a major global pest of fruits. Currently, the sequential male annihilation technique, followed by the sterile insect technique has been used to significantly reduce the population of feral males in this species. However, issues with sterile males being killed by going to male annihilation traps have reduced the efficacy of this approach. The availability of males that are non-methyl eugenol-responding would minimize this issue and increase the efficacy of both approaches. For this, we recently established two separate lines of non-methyl eugenol-responding males. These lines were reared for 10 generations and in this paper, we report on the assessment of males from these lines in terms of methyl eugenol response and mating ability. We saw a gradual decrease in non-responders from ca. 35 to 10% after the 7th generation. Despite that, there were still significant differences until the 10th generation in numbers of non-responders over controls using laboratory strain males. We did not attain pure isolines of non-methyl eugenol-responding males, so we used non-responders from the 10th generation of those lines as sires to initiate two reduced-responder lines. Using these reduced responder flies, we found that there was no significant difference in mating competitiveness when compared with control males. Overall, we suggest that it may be possible to establish lines of low or reduced responder males to be used for sterile release programs, that could be applied until the 10th generation of rearing. Our information will contribute to the further development of an increasingly successful management technique incorporating the use of SIT alongside MAT to contain wild populations of B. dorsalis.


Subject(s)
Tephritidae , Male , Animals , Tephritidae/physiology , Eugenol/pharmacology , Sexual Behavior, Animal , Reproduction
2.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: covidwho-2284578

ABSTRACT

Increases in non-communicable and auto-immune diseases, with a shared etiology of defective autophagy and chronic inflammation, have motivated research both on natural products in drug discovery fields and on the interrelationship between autophagy and inflammation. Within this framework, the tolerability and protective effects of a wheat-germ spermidine (SPD) and clove eugenol (EUG) combination supplement (SUPPL) were investigated on inflammation status (after the administration of lipopolysaccharide (LPS)) and on autophagy using human Caco-2 and NCM460 cell lines. In comparison to the LPS treatment alone, the SUPPL + LPS significantly attenuated ROS levels and midkine expression in monocultures, as well as occludin expression and mucus production in reconstituted intestinal equivalents. Over a timeline of 2-4 h, the SUPPL and SUPPL + LPS treatments stimulated autophagy LC3-11 steady state expression and turnover, as well as P62 turnover. After completely blocking autophagy with dorsomorphin, inflammatory midkine was significantly reduced in the SUPPL + LPS treatment in a non-autophagy-dependent manner. After a 24 h timeline, preliminary results showed that mitophagy receptor BNIP3L expression was significantly downregulated in the SUPPL + LPS treatment compared to the LPS alone, whereas conventional autophagy protein expression was significantly higher. The SUPPL shows promise in reducing inflammation and increasing autophagy to improve intestinal health.


Subject(s)
Autophagy , Eugenol , Spermidine , Humans , Caco-2 Cells , Eugenol/pharmacology , Inflammation , Lipopolysaccharides/pharmacology , Midkine , Spermidine/pharmacology
3.
J Agric Food Chem ; 71(3): 1477-1487, 2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2185453

ABSTRACT

Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Pyroptosis is involved in the pathogenesis of coronavirus, but its role in TGEV-induced intestinal injury has yet to be fully elucidated. Eugenol, an essential plant oil, plays a vital role in antiviral innate immune responses. We demonstrate the preventive effect of eugenol on TGEV infection. Eugenol alleviates TGEV-induced intestinal epithelial cell pyroptosis and reduces intestinal injury in TGEV-infected piglets. Mechanistically, eugenol reduces the activation of NLRP3 inflammasome, thereby inhibiting TGEV-induced intestinal epithelial cell pyroptosis. In addition, eugenol scavenges TGEV-induced reactive oxygen species (ROS) increase, which in turn prevents TGEV-induced NLRP3 inflammasome activation and pyroptosis. Overall, eugenol protects the intestine by reducing TGEV-induced pyroptosis through inhibition of NLRP3 inflammasome activation, which may be mediated through intracellular ROS levels. These findings propose that eugenol may be an effective strategy to prevent TGEV infection.


Subject(s)
Transmissible gastroenteritis virus , Animals , Eugenol/pharmacology , Inflammasomes/genetics , Intestines , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Reactive Oxygen Species , Swine , Transmissible gastroenteritis virus/physiology , Phosphate-Binding Proteins/metabolism , Gasdermins/metabolism
4.
Bol. malariol. salud ambient ; 62(4): 654-662, 2022. tab
Article in Spanish | WHO COVID, LILACS (Americas) | ID: covidwho-2101096

ABSTRACT

El cavo de olor (Syzygium aromaticum) es un árbol, originario de Indonesia, con altura variable, pero que sobre pasa los 10 metros de altura, perteneciente a la familia de las Myrtaceae y cuyas flores que no han abierto, se convierten en botones, que al secar son los mencionados clavos de olor. Poseen como componente principal el Eugenol, entre otros compuestos orgánicos. Por sus características bioquímicas y organolépticas, le proporcionan varios beneficios para la salud, por actuar como estimulantes, antioxidante, con acción antibacterial, antiespasmódicas, además de su marcada acción analgésica y anestésica. Por su parte, la microbiota oral, está conformada por un amplio conjunto de microorganismos pertenecientes al ecosistema bucal y que a través del equilibrio de los mismos, se logrará un adecuado funcionamiento y desarrollo de las funciones fisiológicas en pro de la salud bucal del individuo. La presente investigación tiene como objetivo examinar los datos específicos en el uso del clavo de olor como agente bactericida en las afecciones bucodentales, encontrándose que si puede ser usado como agente bactericida por su marcado efecto sobre la microbiota oral a nivel de eliminar los microorganismos nocivos presentes en la misma, ya que actúa inhibiendo la recomposición de las proteínas, los ácidos nucleicos y la membrana de la pared celular, cambiando la permeabilidad de las células de los microorganismos, favoreciendo su muerte y a su ves favoreciendo el adecuado equilibrio de la microbiota oral, necesario para la adecuada salud bucodental(AU)


The clove (Syzygium aromaticum) is a tree, native to Indonesia, with variable height, but that exceeds 10 meters in height, belonging to the Myrtaceae family and whose flowers that have not opened, become buttons, that when drying are the aforementioned cloves. Their main component is Eugenol, among other organic compounds. Due to their biochemical and organoleptic characteristics, they provide several health benefits, for acting as stimulants, antioxidant, with antibacterial, antispasmodic action, in addition to their marked analgesic and anesthetic action. For its part, the oral microbiota is made up of a wide set of microorganisms belonging to the oral ecosystem and that through their balance, an adequate functioning and development of physiological functions will be achieved in favor of the oral health of the individual. The objective of this research is to examine the specific data on the use of cloves as a bactericidal agent in oral conditions, finding that it can be used as a bactericidal agent due to its marked effect on the oral microbiota at the level of eliminating harmful microorganisms present in it, since it acts by inhibiting the recomposition of proteins, nucleic acids and the cell wall membrane, changing the permeability of the cells of microorganisms, favoring their death and in turn favoring the proper balance of the oral microbiota, necessary for proper oral health(AU)


Subject(s)
Syzygium , Microbiota , Anti-Bacterial Agents , Mouth , Eugenol , Nucleic Acids , Oral Health , Ecosystem
5.
Front Immunol ; 13: 921613, 2022.
Article in English | MEDLINE | ID: covidwho-2009864

ABSTRACT

Increasing evidence supports the ability of eugenol to maintain intestinal barrier integrity and anti-inflammatory in vitro and in vivo; however, whether eugenol alleviates virus-mediated intestinal barrier damage and inflammation remains a mystery. Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Here, we found that eugenol could alleviate TGEV-induced intestinal functional impairment and inflammatory responses in piglets. Our results indicated that eugenol improved feed efficiency in TGEV-infected piglets. Eugenol not only increased serum immunoglobulin concentration (IgG) but also significantly decreased serum inflammatory cytokine concentration (TNF-α) in TGEV-infected piglets. In addition, eugenol also significantly decreased the expression of NF-κB mRNA and the phosphorylation level of NF-κB P65 protein in the jejunum mucosa of TGEV-infected piglets. Eugenol increased villus height and the ratio of villus height to crypt depth in the jejunum and ileum, and decreased serum D-lactic acid levels. Importantly, eugenol increased tight junction protein (ZO-1) and mRNA expression levels of nutrient transporter-related genes (GluT-2 and CaT-1) in the jejunum mucosa of TGEV-infected piglets. Meanwhile, compared with TGEV-infected IPEC-J2 cells, treatment with eugenol reduced the cell cytopathic effect, attenuated the inflammatory response. Interestingly, eugenol did not increase the expression of ZO-1 and Occludin in IPEC-J2 cells. However, western blot and immunofluorescence results showed that eugenol restored TGEV-induced down-regulation of ZO-1 and Occludin, while BAY11-7082 (The NF-κB specific inhibitor) enhanced the regulatory ability of eugenol. Our findings demonstrated that eugenol attenuated TGEV-induced intestinal injury by increasing the expression of ZO-1 and Occludin, which may be related to the inhibition of NF-κB signaling pathway. Eugenol may offer some therapeutic opportunities for coronavirus-related diseases.


Subject(s)
Coronavirus , Transmissible gastroenteritis virus , Animals , Cell Line , Coronavirus/metabolism , Eugenol/pharmacology , Eugenol/therapeutic use , NF-kappa B/metabolism , Occludin , RNA, Messenger , Signal Transduction , Swine , Transmissible gastroenteritis virus/physiology
6.
Molecules ; 27(11)2022 May 26.
Article in English | MEDLINE | ID: covidwho-1869715

ABSTRACT

Impaired autophagy, responsible for increased inflammation, constitutes a risk factor for the more severe COVID-19 outcomes. Spermidine (SPD) is a known autophagy modulator and supplementation for COVID-19 risk groups (including the elderly) is recommended. However, information on the modulatory effects of eugenol (EUG) is scarce. Therefore, the effects of SPD and EUG, both singularly and in combination, on autophagy were investigated using different cell lines (HBEpiC, SHSY5Y, HUVEC, Caco-2, L929 and U937). SPD (0.3 mM), EUG (0.2 mM) and 0.3 mM SPD + 0.2 mM EUG, significantly increased autophagy using the hallmark measure of LC3-II protein accumulation in the cell lines without cytotoxic effects. Using Caco-2 cells as a model, several crucial autophagy proteins were upregulated at all stages of autophagic flux in response to the treatments. This effect was verified by the activation/differentiation and migration of U937 monocytes in a three-dimensional reconstituted intestinal model (Caco-2, L929 and U937 cells). Comparable benefits of SPD, EUG and SPD + EUG in inducing autophagy were shown by the protection of Caco-2 and L929 cells against lipopolysaccharide-induced inflammation. SPD + EUG is an innovative dual therapy capable of stimulating autophagy and reducing inflammation in vitro and could show promise for COVID-19 risk groups.


Subject(s)
COVID-19 Drug Treatment , Syzygium , Aged , Autophagy , Caco-2 Cells , Eugenol/pharmacology , Humans , Inflammation , Monocytes , Plant Oils , Spermidine/pharmacology , Triticum
7.
Drug Dev Ind Pharm ; 48(5): 169-188, 2022 May.
Article in English | MEDLINE | ID: covidwho-1751912

ABSTRACT

OBJECTIVE: To investigate the inhibitory nature of hydroxychavicol against the COVID-19 associated mycotic infections, the present in silico study was performed in hydroxychavicol with the target Lanosterol 14 alpha demethylase and its competency was compared with four approved anti-fungal drugs. SIGNIFICANCE: The corona virus pandemic has drawn stark lines between rich nations and poor, and the occurrence of COVID-19 associated mycotic infections, mucormycosis epidemic stands as the latest manifestation. The increase in resistance in known fungal pathogens to the available anti-fungal drugs and side effects are the important demands that forced to search anti-fungal compounds from medicinal plants as therapeutic alternatives. During the fishing expedition, Piper betle L., gets tremendous attention for its rich source of medicinally important compounds. Among them, hydroxychavicol has the enormous supportive records against microbial growth. METHODS: Hydroxychavicol and the chosen drugs were retrieved from the Pubchem database and subjected to ADME analysis. The structure of the target of the chosen COVID-19 associated fungal pathogens was retrieved from PDB and unavailable protein structures were modeled using the Swiss Model and validated. Virtual screening (PyRx version 0.8) was performed and the interactions were visualized using BIOVIA Discovery Studio. RESULTS: ADME screening of hydroxychavicol was found to have clear reciprocity with the drug-likeliness nature and the subsequent molecular docking study revealed its good binding affinity toward the target protein suggesting its inhibitory nature. CONCLUSION: This study offers the possibility of making use of the suppressive nature of hydroxychavicol in the treatment of mycotic infections either exclusively/in synergistic approach.


Subject(s)
COVID-19 Drug Treatment , Piper betle , Eugenol/analogs & derivatives , Molecular Docking Simulation , Phenols/analysis , Piper betle/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry
8.
Food Chem ; 382: 132251, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1654433

ABSTRACT

Ascorbic acid (AA) and eugenol (EUG) are well-known antioxidants found in several fruits, spices and herbs. In particular, the EUG, one of the major phytocompounds present in clove, acts as pro-oxidant or anti-oxidant depending on its concentration. Considering the medical importance of AA and EUG and its extensive usage in the form of food and medicine, we have developed a voltammetric sensor based on hydroxyapatite-TiO2 composite modified GCE for their selective and simultaneous determination over very wide linear range of 2.78-2490 µM for AA and 1.4-78 µM for EUG with the LODs of 63.3 nM and 94 nM respectively. Practical applicability of the prepared electrode has been demonstrated by detecting AA and EUG in lemon juice, vitamin tablet, clove oil and Kabasura Kudineer, an herbal decoction used as an immunity booster against number of diseases including Covid-19. The proposed HAP-TiO2/GCE shall be useful for food and pharmaceutical industries.


Subject(s)
COVID-19 , Graphite , Nanocomposites , Plants, Medicinal , Ascorbic Acid , Dopamine/analysis , Durapatite , Electrodes , Eugenol , Fruit/chemistry , Pharmaceutical Preparations , Titanium
9.
J Neuroimmune Pharmacol ; 16(4): 743-755, 2021 12.
Article in English | MEDLINE | ID: covidwho-1530371

ABSTRACT

Spike S1 of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) on host cells to enter the cell and initiate COVID-19. Since ACE2 is a favorable enzyme, we were interested in finding a molecule capable of binding spike S1, but not ACE2, and inhibiting the interaction between spike S1 and ACE2. Holy basil (Tulsi) has a long history as a medicine for different human disorders. Therefore, we screened different components of Tulsi leaf and found that eugenol, but not other major components (e.g. ursolic acid, oleanolic acid and ß-caryophylline), inhibited the interaction between spike S1 and ACE2 in an AlphaScreen-based assay. By in silico analysis and thermal shift assay, we also observed that eugenol associated with spike S1, but not ACE2. Accordingly, eugenol strongly suppressed the entry of pseudotyped SARS-CoV-2, but not vesicular stomatitis virus (VSV), into human ACE2-expressing HEK293 cells. Eugenol also reduced SARS-CoV-2 spike S1-induced activation of NF-κB and the expression of IL-6, IL-1ß and TNFα in human A549 lung cells. Moreover, oral treatment with eugenol reduced lung inflammation, decreased fever, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of SARS-CoV-2 spike S1, but not ACE2, by eugenol may be beneficial for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Syzygium , Angiotensin-Converting Enzyme 2 , Animals , Eugenol/pharmacology , HEK293 Cells , Humans , Mice , Ocimum sanctum/metabolism , Protein Binding , SARS-CoV-2 , Spices , Spike Glycoprotein, Coronavirus , Syzygium/metabolism
10.
J Sep Sci ; 44(16): 3146-3157, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1260558

ABSTRACT

Divya-Swasari-Vati is a calcium containing polyherbal ayurvedic medicine prescribed for the lung-related ailments observed in the current pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 infections. The formulation is a unique quintessential blend of nine herbs cited in Ayurvedic texts for chronic cough and lung infection. Analytical standardization of herbal medicines is the pressing need of the hour to ascertain the quality compliance. This persuaded us to develop a simple, rapid, and selective high-performance thin-layer chromatographic method for Divya-Swasari-Vati quality standardization. The developed method was validated for the quantification of marker components, gallic acid, cinnamic acid, piperine, eugenol and glycyrrhizin, against reference standards in five different batches of Divya-Swasari-Vati. The analytes were identified by visualization at 254 nm, and by matching their retention factor with authentic standards. The developed method was validated as per the guidelines recommended by the International Council for Harmonization for parameters like, linearity, limit of detection, limit of quantification, accuracy, and precision. Therefore, the developed novel high-performance thin-layer chromatographic process could be employed for rapid standardization of Divya-Swasari-Vati and other related herbal formulation, which would aid in quality manufacturing and product development.


Subject(s)
Alkaloids/analysis , Benzodioxoles/analysis , Cinnamates/analysis , Eugenol/analysis , Gallic Acid/analysis , Glycyrrhizic Acid/analysis , Piperidines/analysis , Plant Extracts/analysis , Polyunsaturated Alkamides/analysis , Alkaloids/therapeutic use , Benzodioxoles/therapeutic use , Chromatography, Thin Layer , Cinnamates/therapeutic use , Eugenol/therapeutic use , Gallic Acid/therapeutic use , Glycyrrhizic Acid/therapeutic use , Humans , Lung Diseases/drug therapy , Medicine, Ayurvedic , Molecular Structure , Piperidines/therapeutic use , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , Polyunsaturated Alkamides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL